Развитие понятия о числе контрольная работа

Планируемые результаты изучения учебного предмета, курса………. Содержание основного общего образования по учебному предмету… Тематическое планирование с определением основных видов учебной деятельности и метапредметных умений и навыков………… Оценка планируемых результатов……………………………………… Уровни подготовки учащихся и критерии успешности обучения по математике………………………………………… Критерии и нормы оценки знаний, умений и навыков обучающихся по математике……………………………………. Оценка письменных работ по математике……………… Оценка устных ответов по математике………………….. Общая классификация ошибок………………………………… Структура программы Программа составлена на основе Федерального Государственного образовательного стандарта основного общего образования, утверждённого приказом Министерства образования и науки РФ от

Пояснительная записка Данная рабочая программа по математике для 5 класса разработана в соответствии с требованиями федерального государственного стандарта основного общего образования приказ Министерства образования и науки Российской Федерации от 17 декабря г. Мерзляк, В. Полонский, М. Якир, Е. Курс математики 5 класса является фундаментом для математического образования и развития школьников, доминирующей функцией при его изучении в этом возрасте является интеллектуальное развитие учащихся. Курс построен на взвешенном соотношении новых и ранее усвоенных знаний, обязательных и дополнительных тем для изучения, а также учитывает возрастные и индивидуальные особенности усвоения знаний учащимися.

Контрольная работа «Развития понятия о числе»

Планируемые результаты изучения учебного предмета, курса………. Содержание основного общего образования по учебному предмету… Тематическое планирование с определением основных видов учебной деятельности и метапредметных умений и навыков………… Оценка планируемых результатов……………………………………… Уровни подготовки учащихся и критерии успешности обучения по математике………………………………………… Критерии и нормы оценки знаний, умений и навыков обучающихся по математике…………………………………….

Оценка письменных работ по математике……………… Оценка устных ответов по математике………………….. Общая классификация ошибок………………………………… Структура программы Программа составлена на основе Федерального Государственного образовательного стандарта основного общего образования, утверждённого приказом Министерства образования и науки РФ от Новосибирска; Программа основного общего образования по математике содержит следующие разделы: Содержание курса, включающее перечень основного изучаемого материала, распределенного по содержательным разделам.

Планируемые результаты. Тематическое планирование с описанием видов учебной деятельности учащихся классов и указанием примерного числа часов на изучение соответствующего материала. Критерии оценивания. Содержание математического образования Содержание математического образования в основной школе формируется на основе фундаментального ядра школьного математического образования.

Оно в основной школе включает следующие разделы: арифметика, алгебра, функции, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей обще-интеллектуального и общекультурного развития учащихся.

Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии систематизация сведений о действительных числах, о комплексных числах , так же как и более сложные вопросы арифметики алгоритм Евклида, основная теорема арифметики , отнесено к ступени общего среднего полного образования.

Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений.

Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.

Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики словесный, символический, графический , вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности - умений воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, проводить простейшие вероятностные расчеты.

Изучение основ комбинаторики позволит учащимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах. При изучении статистики и вероятности расширяются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.

Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.

Результаты изучения учебного предмета Программа предполагает достижение следующих личностных, метапредметных и предметных результатов. В личностных результатах сформированность: ответственного отношения к учению, готовность и способность обучающихся к самореализации и самообразованию на основе развитой мотивации учебной деятельности и личностного смысла изучения математики, заинтересованность в приобретении и расширении математических знаний и способов действий, осознанность построения индивидуальной образовательной траектории; коммуникативной компетентности в общении, в учебно-исследовательской, творческой и других видах деятельности по предмету, которая выражается в умении ясно, точно, грамотно излагать свои мысли в устной и письменной речи, выстраивать аргументацию и вести конструктивный диалог, приводить примеры и контрпримеры, а также понимать и уважать позицию собеседника, достигать взаимопонимания, сотрудничать для достижения общих результатов; целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики.

Сформированность представления об изучаемых математических понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений; логического мышления: критичности умение распознавать логически некорректные высказывания , креативности собственная аргументация, опровержения, постановка задач, формулировка проблем, исследовательский проект и т. В предметных результатах сформированность: умений работать с математическим текстом, точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики словесный, графический, табличный , доказывать математические утверждения; умения использовать базовые понятия из основных разделов содержаний число, функция, уравнение, неравенство, вероятность, множество, доказательство и др.

Планируемые результаты изучения учебного предмета, курса Выпускник научится в классах для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне Оперировать на базовом уровне понятиями: множество, элемент множества, подмножество, принадлежность; задавать множества перечислением их элементов; находить пересечение, объединение, подмножество в простейших ситуациях.

В повседневной жизни и при изучении других предметов: распознавать логически некорректные высказывания. Числа Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число; использовать свойства чисел и правила действий с рациональными числами при выполнении вычислений; использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач; выполнять округление рациональных чисел в соответствии с правилами; сравнивать рациональные числа.

В повседневной жизни и при изучении других предметов: оценивать результаты вычислений при решении практических задач; выполнять сравнение чисел в реальных ситуациях; составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Статистика и теория вероятностей Представлять данные в виде таблиц, диаграмм, читать информацию, представленную в виде таблицы, диаграммы. Текстовые задачи Решать несложные сюжетные задачи разных типов на все арифметические действия; строить модель условия задачи в виде таблицы, схемы, рисунка , в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи; осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию; составлять план решения задачи; интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи; знать различие скоростей объекта в стоячей воде, против течения и по течению реки; решать задачи на нахождение части числа и числа по его части; решать задачи разных типов на работу, на покупки, на движение , связывающих три величины, выделять эти величины и отношения между ними; находить процент от числа, число по проценту от него, находить процентное отношение двух чисел, находить процентное снижение или процентное повышение величины; решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов: выдвигать гипотезы о возможных предельных значениях искомых величин в задаче делать прикидку Наглядная геометрия Геометрические фигуры Оперировать на базовом уровне понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырехугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар.

Изображать изучаемые фигуры от руки и с помощью линейки и циркуля. В повседневной жизни и при изучении других предметов: решать практические задачи с применением простейших свойств фигур. Измерения и вычисления выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов; вычислять площади прямоугольников.

В повседневной жизни и при изучении других предметов: вычислять расстояния на местности в стандартных ситуациях, площади прямоугольников; выполнять простейшие построения и измерения на местности, необходимые в реальной жизни. История математики описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки; знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей.

Выпускник получит возможность научиться в классах для обеспечения возможности успешного продолжения образования на базовом и углубленном уровнях Элементы теории множеств и математической логики Оперировать понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, определять принадлежность элемента множеству, объединению и пересечению множеств; задавать множество с помощью перечисления элементов, словесного описания.

В повседневной жизни и при изучении других предметов: распознавать логически некорректные высказывания; строить цепочки умозаключений на основе использования правил логики. Числа Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, геометрическая интерпретация натуральных, целых, рациональных; понимать и объяснять смысл позиционной записи натурального числа; выполнять вычисления, в том числе с использованием приемов рациональных вычислений, обосновывать алгоритмы выполнения действий; использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения чисел при выполнении вычислений и решении задач, обосновывать признаки делимости; выполнять округление рациональных чисел с заданной точностью; упорядочивать числа, записанные в виде обыкновенных и десятичных дробей; находить НОД и НОК чисел и использовать их при решении зада;.

В повседневной жизни и при изучении других предметов: применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов; выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений; составлять числовые выражения и оценивать их значения при решении практических задач и задач из других учебных предметов.

Уравнения и неравенства Оперировать понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство.

Статистика и теория вероятностей Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, извлекать, информацию, представленную в таблицах, на диаграммах; составлять таблицы, строить диаграммы на основе данных. В повседневной жизни и при изучении других предметов: извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений.

В повседневной жизни и при изучении других предметов: выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных те, от которых абстрагировались , конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества; решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат; решать задачи на движение по реке, рассматривая разные системы отсчета.

Наглядная геометрия Извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах; изображать изучаемые фигуры от руки и с помощью компьютерных инструментов. Измерения и вычисления выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов; вычислять площади прямоугольников, квадратов, объемы прямоугольных параллелепипедов, кубов.

В повседневной жизни и при изучении других предметов: вычислять расстояния на местности в стандартных ситуациях, площади участков прямоугольной формы, объемы комнат; выполнять простейшие построения на местности, необходимые в реальной жизни; оценивать размеры реальных объектов окружающего мира. История математики Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей. Выпускник научится в классах для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне Элементы теории множеств и математической логики Оперировать на базовом уровне понятиями: множество, элемент множества, подмножество, принадлежность; задавать множества перечислением их элементов; находить пересечение, объединение, подмножество в простейших ситуациях; оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство; приводить примеры и контрпримеры для подтверждения своих высказываний.

В повседневной жизни и при изучении других предметов: использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов. Числа Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень; использовать свойства чисел и правила действий при выполнении вычислений; использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач; выполнять округление рациональных чисел в соответствии с правилами; оценивать значение квадратного корня из положительного целого числа; распознавать рациональные и иррациональные числа; сравнивать числа.

Тождественные преобразования Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем; выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые; использовать формулы сокращенного умножения квадрат суммы, квадрат разности, разность квадратов для упрощения вычислений значений выражений; выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями.

Уравнения и неравенства Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства; проверять справедливость числовых равенств и неравенств; решать линейные неравенства и несложные неравенства, сводящиеся к линейным; решать системы несложных линейных уравнений, неравенств; проверять, является ли данное число решением уравнения неравенства ; решать квадратные уравнения по формуле корней квадратного уравнения; изображать решения неравенств и их систем на числовой прямой.

В повседневной жизни и при изучении других предметов: составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах. Функции Находить значение функции по заданному значению аргумента; находить значение аргумента по заданному значению функции в несложных ситуациях; определять положение точки по ее координатам, координаты точки по ее положению на координатной плоскости; по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции; строить график линейной функции; проверять, является ли данный график графиком заданной функции линейной, квадратичной, обратной пропорциональности ; определять приближенные значения координат точки пересечения графиков функций; оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия; решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчетом без применения формул.

В повседневной жизни и при изучении других предметов: использовать графики реальных процессов и зависимостей для определения их свойств наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т. Статистика и теория вероятностей Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах; решать простейшие комбинаторные задачи методом прямого и организованного перебора; представлять данные в виде таблиц, диаграмм, графиков; читать информацию, представленную в виде таблицы, диаграммы, графика; определять основные статистические характеристики числовых наборов; оценивать вероятность события в простейших случаях; иметь представление о роли закона больших чисел в массовых явлениях.

В повседневной жизни и при изучении других предметов: оценивать количество возможных вариантов методом перебора; иметь представление о роли практически достоверных и маловероятных событий; сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления; оценивать вероятность реальных событий и явлений в несложных ситуациях. Текстовые задачи Решать несложные сюжетные задачи разных типов на все арифметические действия; строить модель условия задачи в виде таблицы, схемы, рисунка или уравнения , в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи; осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию; составлять план решения задачи; интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи; знать различие скоростей объекта в стоячей воде, против течения и по течению реки; решать задачи на нахождение части числа и числа по его части; решать задачи разных типов на работу, на покупки, на движение , связывающих три величины, выделять эти величины и отношения между ними; находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины; решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов: выдвигать гипотезы о возможных предельных значениях искомых в задаче величин делать прикидку. Геометрические фигуры Оперировать на базовом уровне понятиями геометрических фигур; извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде; применять для решения задач геометрические факты, если условия их применения заданы в явной форме; решать задачи на нахождение геометрических величин по образцам или алгоритмам.

В повседневной жизни и при изучении других предметов: использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания. Отношения Оперировать на базовом уровне понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция.

В повседневной жизни и при изучении других предметов: использовать отношения для решения простейших задач, возникающих в реальной жизни. Измерения и вычисления Выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов; применять формулы периметра, площади и объема, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии; применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях.

В повседневной жизни и при изучении других предметов: вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни. Геометрические построения Изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов. В повседневной жизни и при изучении других предметов: выполнять простейшие построения на местности, необходимые в реальной жизни.

Геометрические преобразования Строить фигуру, симметричную данной фигуре относительно оси и точки. В повседневной жизни и при изучении других предметов: распознавать движение объектов в окружающем мире; распознавать симметричные фигуры в окружающем мире. Векторы и координаты на плоскости Оперировать на базовом уровне понятиями вектор, сумма векторов, произведение вектора на число, координаты на плоскости; определять приближенно координаты точки по ее изображению на координатной плоскости.

В повседневной жизни и при изучении других предметов: использовать векторы для решения простейших задач на определение скорости относительного движения. История математики Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки; знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей; понимать роль математики в развитии России.

Методы математики Выбирать подходящий изученный метод для решения изученных типов математических задач; Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства. Выпускник получит возможность научиться в классах для обеспечения возможности успешного продолжения образования на базовом и углубленном уровнях Элементы теории множеств и математической логики Оперировать понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств; изображать множества и отношение множеств с помощью кругов Эйлера; определять принадлежность элемента множеству, объединению и пересечению множеств; задавать множество с помощью перечисления элементов, словесного описания; оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания импликации ; строить высказывания, отрицания высказываний.

В повседневной жизни и при изучении других предметов: строить цепочки умозаключений на основе использования правил логики; использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений.

Числа Оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел; понимать и объяснять смысл позиционной записи натурального числа; выполнять вычисления, в том числе с использованием приемов рациональных вычислений; выполнять округление рациональных чисел с заданной точностью; сравнивать рациональные и иррациональные числа; представлять рациональное число в виде десятичной дроби упорядочивать числа, записанные в виде обыкновенной и десятичной дроби; находить НОД и НОК чисел и использовать их при решении задач.

В повседневной жизни и при изучении других предметов: применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов; выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений; составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов; записывать и округлять числовые значения реальных величин с использованием разных систем измерения.

В повседневной жизни и при изучении других предметов: выполнять преобразования и действия с числами, записанными в стандартном виде; выполнять преобразования алгебраических выражений при решении задач других учебных предметов. Уравнения и неравенства Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения неравенства, системы уравнений или неравенств ; решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований; решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований; решать дробно-линейные уравнения; решать простейшие иррациональные уравнения вида , ; решать уравнения вида ; решать уравнения способом разложения на множители и замены переменной; использовать метод интервалов для решения целых и дробно-рациональных неравенств; решать линейные уравнения и неравенства с параметрами; решать несложные квадратные уравнения с параметром; решать несложные системы линейных уравнений с параметрами; решать несложные уравнения в целых числах.

В повседневной жизни и при изучении других предметов: составлять и решать линейные и квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений, неравенств при решении задач других учебных предметов; выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов; выбирать соответствующие уравнения, неравенства или их системы для составления математической модели заданной реальной ситуации или прикладной задачи; уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи.

В повседневной жизни и при изучении других предметов: иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам; использовать свойства и график квадратичной функции при решении задач из других учебных предметов. Статистика и теория вероятностей Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость; извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики на основе данных; оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля; применять правило произведения при решении комбинаторных задач; оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие исход , классическое определение вероятности случайного события, операции над случайными событиями; представлять информацию с помощью кругов Эйлера; решать задачи на вычисление вероятности с подсчетом количества вариантов с помощью комбинаторики.

В повседневной жизни и при изучении других предметов: извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений; определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи; оценивать вероятность реальных событий и явлений.

Геометрические фигуры извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах; применять геометрические факты для решения задач, в том числе, предполагающих несколько шагов решения; формулировать в простейших случаях свойства и признаки фигур; доказывать геометрические утверждения; владеть стандартной классификацией плоских фигур треугольников и четырехугольников. В повседневной жизни и при изучении других предметов: использовать свойства геометрических фигур для решения задач практического характера и задач из смежных дисциплин.

Отношения Оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники; применять теорему Фалеса и теорему о пропорциональных отрезках при решении задач; характеризовать взаимное расположение прямой и окружности, двух окружностей.

В повседневной жизни и при изучении других предметов: использовать отношения для решения задач, возникающих в реальной жизни. Измерения и вычисления Оперировать представлениями о длине, площади, объеме как величинами. Применять теорему Пифагора, формулы площади, объема при решении многошаговых задач, в которых не все данные представлены явно, а требуют вычислений, оперировать более широким количеством формул длины, площади, объема, вычислять характеристики комбинаций фигур окружностей и многоугольников вычислять расстояния между фигурами, применять тригонометрические формулы для вычислений в более сложных случаях, проводить вычисления на основе равновеликости и равносоставленности; проводить простые вычисления на объемных телах; формулировать задачи на вычисление длин, площадей и объемов и решать их.

В повседневной жизни и при изучении других предметов: проводить вычисления на местности; применять формулы при вычислениях в смежных учебных предметах, в окружающей действительности.

Геометрические построения Изображать геометрические фигуры по текстовому и символьному описанию; свободно оперировать чертежными инструментами в несложных случаях, выполнять построения треугольников, применять отдельные методы построений циркулем и линейкой и проводить простейшие исследования числа решений; изображать типовые плоские фигуры и объемные тела с помощью простейших компьютерных инструментов.

В повседневной жизни и при изучении других предметов: выполнять простейшие построения на местности, необходимые в реальной жизни; оценивать размеры реальных объектов окружающего мира.

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Психотест. Обобщение понятия о числе. Промо-ролик.

КОНТРОЛЬНАЯ РАБОТА. по теме: «Развитие понятия о числе». ВАРИАНТ 1. 1. Вычислите значения выражений: а). б). 2. Найдите. Контрольная работа по теме: "Развитие понятия о числе" разработана по общеобразовательной дисциплине "Математика: алгебра и.

Первоначально под числами понимали лишь натуральные числа, которых достаточно для счета отдельных предметов. Множество натуральных чисел замкнуто относительно операций сложения и умножения — сумма и произведение натуральных чисел также являются числами натуральными. Однако разность двух натуральных чисел уже не всегда является натуральным числом. Так, результат вычитания двух одинаковых новых натуральных чисел приводит к понятию нуля и введению множества целых неотрицательных чисел: Чтобы сделать выполнимой операцию вычитания, вводят отрицательные целые числа и таким образом получают множество целых чисел 3. Чтобы сделать выполнимой операцию деления на любое число, не равное нулю, необходимо к множеству всех целых чисел присоединить множество всех положительных и отрицательных дробей. В результате получается множество рациональных чисел Уравнение имеет на множестве рациональных чисел корень при любых рациональных а и 4. Необходимость дальнейшего расширения множества чисел связана в основном с двумя причинами. Во-первых, рациональных чисел недостаточно для выражения результатов измерений например, нельзя выразить рациональным числом длину диагонали квадрата со стороной 1. Во-вторых, такие числовые выражения, как не являются рациональными числами. Объединение множества рациональных чисел и множества иррациональных чисел бесконечных десятичных непериодических дробей дает множество действительных чисел. Действительные числа сравниваются по величине аналогично правилу сравнения рациональных чисел см. Например, 6. Для числовых промежутков вводятся следующие обозначения: — замкнутый промежуток или отрезок с началом а и концом открытый промежуток или интервал ;.

Каким числом является значение алгебраического выражения 1 натуральным; 2 целым; 3 рациональным; 4 иррациональным. Из 40 учеников класса 2отличника.

Найти абсолютную и относительную погрешности этого приближенного значения. Дискуссии Свежие дискуссии Популярные дискуссии Самые активные участники.

Рабочая программа по математике 5 класс

Просмотров: Транскрипт 1 Тема. Развитие понятия о числе Аннотация: Учебное пособие разработано в соответствии с Рабочей программой общеобразовательной учебной дисциплины ОДП. Учебное пособие содержит: теоретический материал; практический материал для освоения основных, предусмотренных стандартом, умений и накопления опыта в использовании приобретенных знаний и умений в практической деятельности и повседневной жизни; контрольные вопросы и задания. Развитие понятия о числе. Числовые множества N множество натуральных чисел Z множество целых чисел Q множество рациональных чисел I множество иррациональных чисел R множество всех действительных чисел.

Тема 1. Развитие понятия о числе. 1.Действительные числа

.

.

.

План-конспект учебного занятия "Развитие понятия о числе"

.

Развитие понятия о числе

.

Контрольная работа по теме «Развитие понятия о числе»

.

КОС по математике для студентов профессиональных училищ

.

.

.

ВИДЕО ПО ТЕМЕ: История развития понятия числа
Похожие публикации